Spheroidal Graphite Cast Irons

Technical Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength R_m (min)</td>
<td>N/mm²</td>
<td>350</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>700</td>
<td>800</td>
</tr>
<tr>
<td>0.2% proof stress R_p (min)</td>
<td>N/mm²</td>
<td>220</td>
<td>240</td>
<td>250</td>
<td>250</td>
<td>310</td>
<td>320</td>
<td>370</td>
<td>420</td>
<td>420</td>
<td>480</td>
</tr>
<tr>
<td>Elongation A (min)</td>
<td>%</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Brinell hardness (typical)</td>
<td>HB</td>
<td>max 163</td>
<td>max 179</td>
<td>max 187</td>
<td>max 201</td>
<td>160/221</td>
<td>170/241</td>
<td>192/269</td>
<td>229/302</td>
<td>248/352</td>
<td></td>
</tr>
<tr>
<td>Impact resistance values (min) at (-40 ± 2) °C</td>
<td>J</td>
<td>121 (93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression strength $σ_{db}$</td>
<td>N/mm²</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>800</td>
<td>870</td>
<td>1000</td>
<td>1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear strength $σ_{aB}$</td>
<td>N/mm²</td>
<td>315</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>405</td>
<td>450</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Torsional strength $τ_{tB}$</td>
<td>N/mm²</td>
<td>315</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>360</td>
<td>405</td>
<td>450</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity E (tension and compression)</td>
<td>GN/m²</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>149</td>
<td>176</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Poisson's ratio $ν$</td>
<td>-</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td>0,275</td>
<td></td>
</tr>
<tr>
<td>Fatigue limit (Wöhler) (rotating bending) unnotched (dia 10,6 mm)</td>
<td>N/mm²</td>
<td>180</td>
<td>195</td>
<td>195</td>
<td>195</td>
<td>210</td>
<td>224</td>
<td>248</td>
<td>280</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Fatigue limit (Wöhler) (rotating bending) notched (dia 10,6 mm)</td>
<td>N/mm²</td>
<td>114</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>128</td>
<td>134</td>
<td>149</td>
<td>168</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Fracture toughness K_{IC}</td>
<td>Mpa \sqrt{m}</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>23</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Density $ρ$</td>
<td>g/cm³</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,1</td>
<td>7,2</td>
<td>7,2</td>
<td></td>
</tr>
<tr>
<td>Specific heat capacity c between 20°C and 500°C</td>
<td>J/(kg.K)</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear expansion coefficient $α$ between 20°C and 400°C</td>
<td>μm/(m.K)</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td>12,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity $λ$ at 300°C</td>
<td>W/(m.K)</td>
<td>36,2</td>
<td>36,2</td>
<td>36,2</td>
<td>36,2</td>
<td>36,2</td>
<td>35,2</td>
<td>35,2</td>
<td>31,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity $ρ$</td>
<td>μΩ.m</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,51</td>
<td>0,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum permeability $μ$</td>
<td>μH/m</td>
<td>2136</td>
<td>2136</td>
<td>2136</td>
<td>2136</td>
<td>2136</td>
<td>1596</td>
<td>866</td>
<td>501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis losses at B = 1T</td>
<td>J/m³</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>1345</td>
<td>2248</td>
<td>2700</td>
<td>2700</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Mean value from 3 tests
2) Individual value
Austempered Ductile Cast Irons (ADI)

Technical Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Standard</th>
<th>Material designation: symbol and (number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength Rm (min)</td>
<td>BS EN 1564 (1997)</td>
<td>EN-GJS-800-8 (EN-JS1100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN-GJS-1000-5 (EN-JS1110)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN-GJS-1200-2 (EN-JS1120)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN-GJS-1400-1 (EN-JS1130)</td>
</tr>
<tr>
<td>0.2% proof stress Rp0.2 (min)</td>
<td>N/mm²</td>
<td>800</td>
</tr>
<tr>
<td>Elongation A (min)</td>
<td>N/mm²</td>
<td>500</td>
</tr>
<tr>
<td>Impact resistance values (min)</td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>Charpy (notched) at (23±5)°C</td>
<td>J</td>
<td>102 (92)</td>
</tr>
</tbody>
</table>

Mechanical Properties

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SI unit</th>
<th>Minimum values for properties¹) normative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength Rm (min)</td>
<td>N/mm²</td>
<td>800</td>
</tr>
<tr>
<td>0.2% proof stress Rp0.2 (min)</td>
<td>N/mm²</td>
<td>500</td>
</tr>
<tr>
<td>Elongation A (min)</td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>Impact resistance values (min)</td>
<td>J</td>
<td>100</td>
</tr>
</tbody>
</table>

Other Properties

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SI unit</th>
<th>Minimum values for properties²) normative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression strength σdb</td>
<td>N/mm²</td>
<td>1300</td>
</tr>
<tr>
<td>0.2% proof</td>
<td>N/mm²</td>
<td>620</td>
</tr>
<tr>
<td>Shear strength σdb</td>
<td>N/mm²</td>
<td>720</td>
</tr>
<tr>
<td>Torsional strength τdb</td>
<td>N/mm²</td>
<td>720</td>
</tr>
<tr>
<td>0.2% proof</td>
<td>N/mm²</td>
<td>350</td>
</tr>
<tr>
<td>Impact resistance values (min)</td>
<td>J</td>
<td>100</td>
</tr>
<tr>
<td>Charpy unnotched, at (23±5)°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture toughness KIc</td>
<td>Mpa-m$^{1/2}$</td>
<td>62</td>
</tr>
</tbody>
</table>

Typical Values

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SI unit</th>
<th>Minimum values for properties²) normative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brinell hardness HB</td>
<td></td>
<td>260-320</td>
</tr>
<tr>
<td>Modulus of elasticity E (tension and compression)</td>
<td>kN/mm²</td>
<td>170</td>
</tr>
<tr>
<td>Possion’s ratio ν</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>kN/mm²</td>
<td>65</td>
</tr>
<tr>
<td>Density ρ</td>
<td>kg/dm³</td>
<td>7.1</td>
</tr>
<tr>
<td>Linear expansion coefficient α</td>
<td>µm/(m.K)</td>
<td>14.6</td>
</tr>
<tr>
<td>Thermal conductivity λ</td>
<td>W/(m.K)</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Note 1: The minimum values can be obtained on wall thickness up to 50 mm. For heavier section agreement between purchaser and manufacturer is recommended.

Note 4: Notched after heat treatment.
Grey Cast Irons

Technical Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength R_m</td>
<td>N/mm2</td>
<td>150-250</td>
<td>200-300</td>
<td>250-350</td>
<td>300-400</td>
<td></td>
</tr>
<tr>
<td>0.1% proof stress $R_{p0.1}$</td>
<td>N/mm2</td>
<td>98-165</td>
<td>130-195</td>
<td>165-228</td>
<td>195-260</td>
<td></td>
</tr>
<tr>
<td>Elongation A</td>
<td>%</td>
<td>0.8 to 0.3</td>
<td>0.8 to 0.3</td>
<td>0.8 to 0.3</td>
<td>0.8 to 0.3</td>
<td></td>
</tr>
<tr>
<td>Compression strength σ_B</td>
<td>N/mm2</td>
<td>600</td>
<td>720</td>
<td>840</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>0.1% compression yield point $\sigma_{0.1}$</td>
<td>N/mm2</td>
<td>195</td>
<td>260</td>
<td>325</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Bending strength σ_B</td>
<td>N/mm2</td>
<td>250</td>
<td>290</td>
<td>340</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Shear strength σ_B</td>
<td>N/mm2</td>
<td>170</td>
<td>230</td>
<td>290</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Torsional strength τ_B</td>
<td>N/mm2</td>
<td>170</td>
<td>230</td>
<td>290</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity E</td>
<td>kN/mm2</td>
<td>78-103</td>
<td>88-113</td>
<td>103-118</td>
<td>108-137</td>
<td></td>
</tr>
<tr>
<td>Poisson’s ratio ν</td>
<td>-</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Bending fatigue strength σ_{BW}</td>
<td>N/mm2</td>
<td>70</td>
<td>90</td>
<td>120</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Fatigue limit under reversed tension-compression stresses σ_{dzW}</td>
<td>N/mm2</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Fracture toughness K_{IC}</td>
<td>N/mm$^{3/2}$</td>
<td>320</td>
<td>400</td>
<td>480</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Density ρ</td>
<td>g/cm3</td>
<td>7.10</td>
<td>7.15</td>
<td>7.20</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td>Specific heat capacity c</td>
<td>J/(kg.K)</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>between 20°C and 200°C</td>
<td></td>
<td>535</td>
<td>535</td>
<td>535</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>between 20°C and 600°C</td>
<td></td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Linear expansion coefficient α</td>
<td>mm/(m.K)</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>between -100°C and +20°C</td>
<td></td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>between 20°C and 200°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between 20°C and 400°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity λ</td>
<td>W/(m.K)</td>
<td>52.5</td>
<td>50.0</td>
<td>48.5</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>at 100°C</td>
<td></td>
<td>51.0</td>
<td>49.0</td>
<td>47.5</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>at 200°C</td>
<td></td>
<td>50.0</td>
<td>48.0</td>
<td>46.5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>at 300°C</td>
<td></td>
<td>49.0</td>
<td>47.0</td>
<td>45.0</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>at 400°C</td>
<td></td>
<td>48.5</td>
<td>46.0</td>
<td>44.5</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>Resistivity ρ</td>
<td>Ω mm2/m</td>
<td>0.80</td>
<td>0.77</td>
<td>0.73</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Coercivity H_c</td>
<td>A/m</td>
<td>560 to 720</td>
<td>560 to 720</td>
<td>560 to 720</td>
<td>560 to 720</td>
<td></td>
</tr>
<tr>
<td>Maximum permeability μ</td>
<td>μH/m</td>
<td>220 to 330</td>
<td>220 to 330</td>
<td>220 to 330</td>
<td>220 to 330</td>
<td></td>
</tr>
<tr>
<td>Hysteresis losses at B = 1T</td>
<td>J/m3</td>
<td>2500 to 3000</td>
<td>2500 to 3000</td>
<td>2500 to 3000</td>
<td>2500 to 3000</td>
<td></td>
</tr>
</tbody>
</table>

Malleable Cast Irons

Technical Data

<table>
<thead>
<tr>
<th>Malleable Iron</th>
<th>Grades</th>
<th>Tensile Strength N/mm2</th>
<th>0.2% proof stress Rp0.2 N/mm2</th>
<th>Elongation %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackheart Malleable</td>
<td>EN-GJMB-300-6</td>
<td>300</td>
<td>---</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>EN-GJMB-350-10</td>
<td>350</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Pearlitic Malleable, Grades</td>
<td>EN-GJMB-450-6</td>
<td>450</td>
<td>270</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>EN-GJMB-500-5</td>
<td>500</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>EN-GJMB-550-4</td>
<td>550</td>
<td>340</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EN-GJMB-600-3</td>
<td>600</td>
<td>390</td>
<td>3</td>
</tr>
<tr>
<td>Whiteheart Malleable</td>
<td>EN-GJMW-400-5</td>
<td>400</td>
<td>220</td>
<td>5</td>
</tr>
</tbody>
</table>